In the Australian region the situation found in the quadrilineata species group where these two cytologically differentiated sibling species have been detected contrasts with the situation in D. rubida where four geographical races have arisen by various isolating mechanisms and are characterised by different inversion patterns (Mather 1963, 1964, 1968 a and b).

SEXUAL ISOLATION TABLE

Females	Males	Females Tested	Number Insem.	% Insem.	Comment
D. pseudo.(Cairns)	D. tet.(Brown R.)	101	0	0	
D. tet.(Brown R.)	D. pseudo.(Cairns)	92	2	2	F ₁ larvae
D. pseudo.(Brown R.)	D. tet.(Brown R.)	76	7	9	F ₁ larvae
D. tet.(Brown R.)	D. pseudo.(Brown R	R _•) 77	2	3	-

Acknowledgement: This work was carried out under the supervision of Dr. Wharton B. Mather, Head of the Genetics Laboratory and arises out of a thesis for the Degree of Doctor of Philosophy in the University of Queensland.

References: Angus, D. 1967. Additions to the D. fauna of New Guinea. Pap. Dep. Zool. Univ. Qd, 3: 31-42. Angus, D. 1968. Chromosomal polymorphism in D. tetrachaeta. J. Hered. 59: 289-296. Mather, W.B. 1963. The races of D. rubida. Proc. XI Int. Congr. Genet., The Hague, 1: 161-162. Mather, W.B. 1964. Speciation in D. rubida. Evol. 18: 10-11. Mather, W.B. 1968(a). A third race of D. rubida. Pap. Dep. Zool. Univ. Qd, 3: 75-77. Mather, W.B. 1968(b). Evolution in D. rubida. Proc. XIIth Int. Congr. Genet. Tokyo. 1: 332. Strickberger, M.W. 1962. Experiments in Genetics with D. New York: John Wiley and Sons.

Faltus, F. and H. Oberlander. Brandeis University, Waltham, Massachusetts. Ecdysone induced differentiation of pulsating regions in genital imaginal disks after culture in vivo. (1)

Although the genital disks of D. melanogaster have been cultured for years in the abdomens of adult flies without differentiating, Nothiger and Oberlander (2) have found that male genital disks from mature larvae regularly form pulsating regions after being cultured in young flies for two weeks. They showed that injected

ring glands increased the percentage of disks which pulsate, and suggested that ecdysone was responsible. Since the ring gland is a composite gland it was necessary to test the effect of ecdysone directly.

The wild stock "sevelen" of D. melanogaster was used in these experiments as both donor and host. The animals were reared on standard food (maize, sugar, agar and yeast) at 25° C. Larval donors were used 117-120 hours after egg laying, and adult hosts were used one day after emergence.

Whole male genital disks were injected into adult flies and examined after two weeks. In one experiment one half of the adult hosts were injected with 6 x 10^{-4} ug of ecdysone (3) dissolved in 10% alcohol, while the controls were injected with an equal volume (0.003 ul) of 10% alcohol. Of 38 surviving experimental hosts 55% contained pulsating disks, while only 35% of 43 surviving controls did so. The difference between these two groups was significant within 90% confidence limits according to the binomial probability model.

A second experiment in which the experimented hosts received 6 \times 10⁻⁴ ug ecdysone on days one and five resulted in the following: 88.5% of 26 surviving experimented hosts contained pulsating disks, but only 37.5% of 24 control hosts did so. This was significant within 99% confidence limits.

Presumably a single dose was less effective because of hormone inactivation. However, even the double dose of ecdysone was sufficiently low to support the conclusion that pulsating regions in cultured male genital disks differentiate in response to the action of residual ecdysone in the adult host. It is thus unnecessary to consider an ecdysone independent mechanism of differentiation to explain the origin of the pulsating regions.

(1) Supported by grant No. GB-7992 from the National Science Foundation. (2) Nöthiger, R. and Oberlander, H., 1967, J. Exp. Zool. 164: 61-68. (3) The ecdysone used in these experiments was generously provided by Dr. John Siddall (Zoecon Corporation).